Ay

APPLYING
DOMAIN DRIVEN

DESIGN

WITH
CQRS AND
EVENT SOURCING

BY NICK CHAMBERLAIN

Chapter 1

Chapter 1
The Domain
Big Picture EventStorming

Our first Domain Event: "Coffee Purchased"

Momentum
Unlimited space

Discovering the Domain through EventStorming
The Whole Picture

Discovering Hotspots through EventStorming

Discovering Commands through EventStorming

The Domain

First Pop Coffee Company is a business specializing in roast-to-order coffee. Roast-to-order, in this case,
means that the company has scheduled roast days where he roasts a set number of Ibs of coffee based solely
on the supply and the amount that he can roast in that single roast session. He doesn't have the resources to
roast and sell large quantities of roasted coffee beans, but he wants to grow and scale as demand increases.

The company is run by Nick Chamberlain who has been a hobby roaster for 5 years. He started with a sample
drum roaster that can roast 1/4 |b per batch. He recently upgraded to a 1 |b per batch drum roaster. Each roast
takes about 10 minutes from start to finish. With prep time and warm-up time, he can roast 13 Ibs per hour with
his current setup. That means that on a given roast day, he can roast about 104 Ibs of coffee. He buys it bulk
from a supplier and they sell 50 or 100 Ib bags via UPS (former) or freight (latter).

A local roaster is selling their "select" coffees for $15.00 - $18.00 per Ib. If he can buy 100 lbs of coffee for
around $500 - $550 and sell the roasted coffee for $15.00/Ib, he could generate about $1560 revenue per roast
session. Minus bean cost and overhead, he's thinking he could do about $2000 - $2500 profit on a good week.

While he has the potential to make more if he can buy more equipment and roast more per session, he doesn't
want to sell more than he can produce. Hence his idea that he sells only the amount that he can roast at any
given time. So he hired a software company to develop a website for him that will let him be really transparent to
his potential customers about the timing of his roast-to-order coffee.

What does this mean? Well, Nick is open to suggestions. He is imagining having a way to schedule his roasts
by calendar day. So on his website, visitors can see what days he has scheduled to roast. Based on his current
supply of coffee and the age of the many shipments of green coffee he has in stock (ready to be roasted) he will
decide what days he has available to roast. His calendar might be a 1 week calendar or a 1 month calendar, not
quite sure yet.

Say he has 200 Ibs of green coffee in stock. He wants to roast 5/7 days this week. He will plan his roast days
for Monday thru Friday. When he updates the calendar through a management console, he can allocate as many
pounds that he wants to roast for any of his roast days, along with what kind of bean, cupping notes, and ideal
roast based on samples that he's done (he won't do custom roast levels). He might plan to roast 30 Ibs each day
(the default schedule), but he can deviate. He can also do half of the roasts as one bean and half as another.
He'll have the ability to allocate certain beans for each batch.

af://c18
af://c21

When he sets up his roast schedule, the coffee roasted that day will become available for purchase from the
website. He will choose the bean that he has available and it will be displayed on the schedule with cupping
notes.

The user will click on a day and then will see the 30 Ibs (or scheduled amount) that are available to buy for that
roast day. They might be represented graphically, like a grid that they can click squares to add a Ib to their cart.
They will see other customers reserve Ibs for the day and when all the Ibs for the day are purchased, no more Ibs
can be purchased.

The cart system might work like an event ticket reservation system. You may add the Ib to the cart, but to make
sure the customer commits - it will be removed from the cart after 5 minutes. Only after the customer charges
their credit card will the coffee be reserved completely and no one else will be able to buy it.

Once a customer purchases coffee from a roast day, they will get a confirmation email with the schedule and the
expected dates that the coffee will be roasted and shipped to them.

On roast day, Nick will confirm that the roast day has started and the user might get a notification that their
coffee is being roasted today. After roasting the coffee and bagging it, Nick will confirm that he roasted all the
Ibs of coffee that were reserved for the day and a notification will go to the user that their coffee was roasted.
The roast schedule on the website will reflect the day's status - scheduled, roasting, roasted, resting (1 day rest
period), shipped.

When the coffee gets shipped after the 1 day rest period, the customer will get notification that their order is
being shipped. Shipping will be a flat rate box of some sort (hoping there's a service that can take care of it).
The coffee will get bagged in a plastic zipper bag with CO2 vent.

He'll need to know what he has available when he sets up his schedule. So when he receives bulk coffee from
his supplier, he'll need to be able to add the green beans to inventory and that will be reflected in his admin
console that he uses to allocate batches to the schedule.

The site will also sell roasted beans (dated) when available at a lower price. Maybe ~$10.00 for coffee that was
roasted the earlier week. This will be a separate page on the website for discount coffee that's not roast-to-order.

There will be a mailing list that will notify people about the next schedule release.

He's not quite ready to approach it yet, but he plans to also offer custom K-Cups at 14g of coffee each cup so
the math could be done to figure out whether that'd be profitable.

He's also thinking about giving the customer a copy of their roast profile as a marketing thing.

His competitive advantage comes from offering the freshest artisan-roasted coffee available and giving himself
the freedom to control demand through his scheduling system. If he wants to roast less, he's able to schedule
less. If he wants to make some more money, he can roast extra for the week (given that he has enough
customers and demand)...

Big Picture EventStorming

The Team helping Nick get his website going begins with an EventStorming session. This is so that both the
software Team and Nick can get their heads wrapped around the Core Domain and make sure they are writing the
right code. It's essential that Nick uses 3rd party for the code the Team shouldn't be writing because he has a
limited budget.

This is EventStorming session is called the Big Picture (Brandolini, 214) event and it will be the first of a few
EventStorming sessions while they develop the Ubiquitous Language and Context Map for the system.

| won't define a lot of terms for DDD or EventStorming. | want the reader to do the homework for term definitions.
I'll be using capitalization to do 2 things:

o Emphasize important Domain-Driven Design terms that you can research on your own
» Emphasize important Ubiquitous Language terms that emerge through this discussion

| want to focus on end goals. At this point, we're trying to achieve a working Context Map that we can prototype
quickly so that Nick can evaluate whether the Team is on the right track with his business plan.

Our first Domain Event: "Coffee Purchased"

The Team asks Nick to think of an event that will happen in the core of his business. He wants to be very
customer-focused, so he writes Coffee Purchased on an orange stickie and slaps it up on the board. This is
what he's hoping for the most, obviously.

What else is he envisioning as core to his business? There's the idea of his "Roast Schedule" so he puts Roast
Schedule Created as another Domain Event. In order for him to make good decisions while he plans his Roast
Schedule, he'll have to monitor his Inventory of green, un-roasted coffee beans. So the next Domain Event:
Inventory Checked.

Momentum

Minus a couple periods of silence, broken by the Team putting a random Domain Event up on the wall (a
technique used by EventStormers coined "Icebreaker"), the Team continues to fill in a timeline of Events across
Nick's roast-to-order business domain.

af://c60
af://c76
https://buildplease.com/img/firstpop_bp_start.png
af://c83

.. A

— { f L <

As Nick and the Team start putting more Domain Events on the EventStorming surface, questions or "Hot Spots"
start to emerge:

¢ |s the primary unit of measure 1 Ib of coffee?
* |s Nick going to always roast a fixed # of Ibs of coffee per day?
¢ Or will Nick be able to roast more coffee one day and less on another?

We always note them on purple stickies and slap them on the wall near their respective Domain Events.
Terms that Nick defines as a Domain Expert start to emerge:

* Green Bean: Coffee that hasn't been roasted yet. Purchased in bulk, either 50 or 100 Ib bags.

¢ Roast Schedule: The outlay of Nick's production week where he plans to roast x Ibs of green beans each
day for a selection of days in the week.

¢ Inventory: When Nick receives a shipment of green beans, they get placed in Inventory and available to
allocate to his Roast Schedule.

i — { e —" S A - —f%
Unlimited space

Whether or not we find ourselves running out of space, we want to avoid even the perception that there is a
limited space on our Modeling Surface (Brandolini, 189). As soon as the Team sees the potential for running out
of room on their initial paper, they add as much additional space as they can...

https://buildplease.com/img/firstpop_bp_1.png
https://buildplease.com/img/firstpop_bp_2.png
af://c116

Time

Time

Time

https://buildplease.com/img/firstpop_bp_3.png

Discovering the Domain through EventStorming

Once Nick describes the important Domain Events that he envisions for managing his own Inventory and Roast
Schedule concepts, we start to focus on the Customer Experience of buying roasted coffee from him.

Nick and the Team imagine the Roast Schedule as a centerpiece of the site; the first thing that the Existing
Customer/Potential Customer sees when they access firstpopcoffee.com.

If the Customer is interested in buying Coffee (I'm capitalizing key Ubiquitous Language terms also), they will
likely choose a Roast Day from Nick's Roast Schedule. The Domain Event is Roast Day Chosen.

Time

What makes this domain more complex than a simple "Add a Product to a Cart and Checkout" is that we are
"Auctioning Off" a Product that will have a finite Available Quantity allocated to a single Roast Day. It'll be
similar to a Venue with limited Available Seating. This means that the potential Customer can't leave Product in
their Cart without making a decision within, say 5 minutes. They need to allow other Potential Customers a
chance to actually buy the Coffee that's available on that Roast Day.

Nick and the Team start putting new Domain Events up on the wall. Nick is in the mindset that he's going to
"roast the green beans according to his available inventory and schedule he designed". So he starts putting
Events up like Roast Day Green Bean Quantity Reserved and Reserved Green Beans Un-Reserved. A purple
stickie goes up: "When do 'Green Beans' cease being 'Green Beans' and become 'Roasted Coffee for Sale'?"...

af://c123
https://buildplease.com/img/firstpop_bp_4.png

This thought process tugs at the core of Domain-Driven Design. Does the Potential Customer really care about
Nick's inventory of Green Beans and how he is managing his Roast Schedule outside of simply wanting to buy
fresh coffee beans? True, both the Customer and Nick have one focal point - the Roast Schedule. For Nick, he's
using the Roast Schedule to plan and control both the demand and supply for his roasted green coffee beans.
For the Customer, they're using the Roast Schedule to buy artisan-roasted coffee.

So the question was asked "When do the 'Green Beans' cease being 'Green Beans' and become 'Roasted Coffee
for Sale'?"... the answer is that they don't. Customer and Roaster are two separate Bounded Contexts.

This is where Domain-Driven Design fixes traditional modeling. What is a core reason why we end up with
unmanageable, spaghetti integrations...? We assume that a concept that lives in one context MUST live in
another context.

While the Team notices this distinction, they decide to save the delineation of these Bounded Context for a
"Design Level" EventStorming session later. They do, however help Nick to establish the different terms in the
Ubiquitous Language as he continues putting more Events on the wall.

Revised Ubiquitous Language Glossary:

* Roasted Coffee: Roasted coffee that is purchased from firstpopcoffee.com. It is the end product of roasting
the allocated Green Bean Inventory for a given Roast Day

* Green Bean: Coffee that hasn't been roasted yet. Purchased in bulk, either 50 or 100 Ib bags.

¢ Roast Schedule: The outlay of Nick's production week where he plans to roast x Ibs of green beans each
day for a selection of days in the week.

* Inventory: When Nick receives a shipment of green beans, they get placed in Inventory and available to
allocate to his Roast Schedule.

The Whole Picture

Nick and the Team continues, filling in all of the Domain Events that they can think of and come to agreements
about. Questions arise that they have to discuss further like "Is Reserving the Coffee the same as adding the
Coffee to your Cart?" After a little discussion, they determine that Roasted Coffee Quantity Added to Cart
signifies the beginning of the Countdown Timer Started Event to give the Customer five minutes to order the
Coffee.

https://buildplease.com/img/firstpop_bp_4_1.png
af://c161

///L L S S S | SN S j,,,<§

(Time >
|
|
\

=Es= ===

[‘\
-

A
i S — [e —— //

We're looking for a Big Picture of Nick's business. This applies for any kind of business you want to use
EventStorming for. This first session is an attempt to see everything that's in everyone's head about the
business, to break down information "silos."

https://buildplease.com/img/firstpop_bp_5.png

Discovering Hotspots through EventStorming

As Nick and the Team continue, they discover that within the two Bounded Contexts that have emerged through
the exercise - there are various concepts of Inventory. A purple stickie goes up: "What are the different kinds of
'Inventory' we are dealing with?"

Time

...............

Time

‘.--I..v

¢ Physical Green Bean Inventory that Nick is concerned with keeping enough supply through ordering more
green beans from his suppliers.

¢ Allocated/Unallocated Green Bean Inventory that Nick is concerned with for use in his Roast Planning.

* Available Roasted Coffee on a given Roast Day that the Customer is allowed to add to their Cart, either
buying the Coffee or after 5 minutes the Coffee goes back to the Available Roasted Coffee for the Roast

Day.

Another form of separation starts to show itself between the first two "Inventories" listed above. There is
Physical Green Bean Inventory that Nick receives through Shipping and sits in storage, and there's the Allocated
Roast Schedule Inventory which is reduced as Customers buy Coffee and he roasts it for them.

The Team, again, starts to see separate Bounded Contexts emerge within the Domain. There's the concept of
Physical Inventory Management - Nick's Physical Green Bean Inventory that fluctuates as he orders and
receives Green Beans into storage. Then there's Nick's Roast Planning Inventory - The Green Bean Inventory
that Nick can Allocate to his Roast Schedule safely, without scheduling and selling more Green Beans than he

can roast.

As they discuss this separation, Nick and the Team agree that there is a separation between what Nick has in
storage and what he can allocate and roast. He may allocate Green Beans to his future Roast Schedule,
reducing his Unallocated Physical Green Bean Inventory, but his Physical Inventory stays the same.

These new terms in the Ubiquitous Language can be incorporated in the EventStorming session:

¢ Physical Green Bean Inventory: Green bean inventory that Nick orders from green bean suppliers in bulk
and stores. He needs to manage what he has in stock in order to make sure he has enough to allocate to

af://c170
https://buildplease.com/img/firstpop_bp_6.png

his Roast Schedule

* Allocated Roast Schedule Inventory: Green beans that Nick plans to roast according to his Roast Schedule.
It is the amount of green beans that he plans to roast as he plans his future roast schedule. It influences
(but is not part of the same Bounded Context as) the amount of Coffee that a Customer can buy.

In addition to these concepts of Inventory in the new Bounded Contexts (Physical Inventory Management and
Roast Planning) that are emerging, Nick and Team can also address the concept of Available Coffee for Sale
in the Customer Bounded Context that emerged above. They start calling it the Customer Bounded Context,
however there is a likelihood that it will be further broken down into finer-grained Bounded Contexts as they move
forward.

More Events go up on the surface, more Hotspots, and here's where we are:

Time

=s==== ..rr = EEEE . EEEEEEE

I-'.

‘.-IIIIv

Tine Tine

https://buildplease.com/img/firstpop_bp_7.png

Discovering Commands through EventStorming

Nick and the Team have put up enough Domain Events on the Big Picture Surface to start thinking about the
Commands that cause these Events. As you might expect, having sufficient space is going to be important
since many of the Events are triggered by some type of Command (some by other Events).

Here is a legend representing the additional stickies going up on the surface:

Big Picture Event Storming

As a starting point reference, here's what the Surface looks like.

Time

=s==s=2 ..r¥- =sss | =======

Time Time

-‘-IIIIIF

The Team is still kind of fuzzy on the concept of Physical Inventory and Allocated Roasted Coffee Inventory, but
they note it as a purple stickie ("Hotspot").

af://c208
https://buildplease.com/img/firstpop_bp_legend.png
https://buildplease.com/img/firstpop_bp_8.png

The momentum picks up as Nick and the Team add Commands to the design surface, keeping an eye on any
insights that they have missed while focusing on Domain Events.

One concept emerges that no one had thought about. The Team suggested that Nick not focus on a custom
application for Shipping. This is not the Context that contributes a lot of competitive advantage to his business
and can be accomplished by 3rd party tools like Shopify (more on this later).

However, Nick does not want to be bogged down with the overhead of going through every Order when he's done
Roasting to make sure he's followed the right steps to Ship the Roasted Coffee to the Customer. He's hoping to
have a way to at least go down his Roast Day lItinerary and make sure he's processed every order perfectly. He
also needs to think about Dissatisfied Customers when something doesn't go right.

Whether or not Nick and Team agree on using a 3rd party tool for Shipping and Customer Service Bounded
Contexts, Nick's "sanity checking" Order Fulfillment Bounded Context may contribute to Nick's competitive
advantage enough to consider designing it from scratch. The Team takes note with a purple stickie and moves
on.

After lengthy discussion, breaks, and an additional session, Nick and the Team have a Big Picture "Artifact"
(Brandolini, 136) to work with. The following figures show the progression:

Time Time

I-I.i.-..-:: = s BN EW l:-l ..-_..- ::..v_
i EE == ===
IIII=I.-.. m m

https://buildplease.com/img/firstpop_bp_cmds_8_1.png
https://buildplease.com/img/firstpop_bp_cmds_9.png

Time Time

l.l.i-- | --:: = EeEE =S .::‘.. /‘ ::II
Ee

lll‘. = EE ‘lll’ |

i .. (
. -. |

Here's what Nick and the Team end up with at the end of their Big Picture EventStorming session(s):

Tine Time

g L

— - ’I- ===

ssws ‘ I-v.III

EEE= : ==I EEEE == .--..

https://buildplease.com/img/firstpop_bp_cmds_10.png
https://buildplease.com/img/firstpop_bp_cmds_11.png

	fpc_cover_v3_85x11
	ch_1_master
	Chapter 1
	The Domain
	Big Picture EventStorming
	Our first Domain Event: "Coffee Purchased"
	Momentum
	Unlimited space

	Discovering the Domain through EventStorming
	The Whole Picture

	Discovering Hotspots through EventStorming
	Discovering Commands through EventStorming

