| The\}ee of Root Cause f
X \W
Project Test Smells

a smell thats usually noticed by the project manager or
the customer, who does not look at the test code or run
the Tests

oy
.-"'-. .'H.
Buggy Tests
DEVEIGPEFE' Not S 3 a project-level indication
1+ ' - - that allis net well with our
wrlnng TESTS \ ' automated tests
we hear that our developers ;
aren't writing tests
Z Fragile Test j
- see Behawvior Test Smells
Not Enough Time Production Bugs
developers may have trouble
writing fests in the time they are J“E_ﬁﬂdFTGG mlﬂ ny bugs Hard-to-Test Code
given to do the development uring formal fest or in . see Code Test Smells
] production ngh Test
Foot Cause | -
Hard-to-Test Code) overly aggressive Maintenance Cost L Obscure Test i
selopm vedul
see Code Test Smells development schedule : I"ﬁﬂ“mg R“rl‘ Tests . ‘ test code needs tobe see Cade Test Smelbs
Foot Cause wenear fhat our developers arent maintained aleng with the
Wrong Test Automation Strategy E'L'F’e”’if":’rzf T‘_?‘fm le‘“d%rf' who running the test very often k_ production code it verifies
test automation strategy that leads to IT:;;?:;;;:?%E re*frr;. ' Hoot Cause
Fragile Tests or Obscure Tests that - slow tests that slow down the pre- Fragile Test
t k. t | t .I. Integration regression festing :
are ?D eng oW —— see Behavior Test Smells
riause
Eﬁﬁj Cg UE;,E ' Untested Code Unrepeatable Tests that force
ask Ihe - wny s Jjust know that some piece of codein the developers to restart their test Hard-to-Test Code
SUT is not being exercised by any tests enviranment see Code Test Smells
SUT includes cod w - Lost Test L Obscure Test
W Tincludes code paths that react to particular way s The number of tests being executed sae Code Test Smells
that a depended-on component (DO C) behaves and we in a test suite has declined (or has

Faven't found a way to exercise those paths :
- not increased as much as expected).

Untested Requirement J Foot Cause
'l.'u'E'JLJE:-T 'know that some F.ie.:e of Test Methad or Testocase Class that has
been disabled or has never been added =
the AllTests Suite

Neverfail Test
we just ‘know' that some plece of
functionality isw not working, even though
the tests for that functionality pass

functionality i1s net being tested
)

Eoot Cause — .
SUT includes behavior that is not Missing Unit Test

visible through its public inter face all the unit tests pass but a _
customer test continues to fail

Foot Cause
caused by improperly coded assertions such as
assertTrue{avariable, true) instead of assertEquals
favariable, trus)

Eoot Cause
when a team focuses on writing the customer

Source: tests but fails to do test-driven development
Gerard Meszaros: xUnit Test Patterns: Refactoring Test Code using unif tests
Addison-Wesley Professional May 2007

=2 Q) J2

Behavior Test Smells Frequent Debugging

encountered when we compile or run tests... these smells will manual debugging is required to

: . determine the cause of most
take the form of compile errors or test failures test Failures

Eoot Cause
lack of Defect Localization in
our suite of automated tests

Assertion Roulletite

It 15 hard to tell which of several
assertions within the same test
method caused a test fallure

Eoot Cause

Mﬂnl.lﬂl I"T'E'r\fenﬁﬂn missing the detailed unit test that

would peint out a logic errir inside an
individual class

person running the test must do
something manually either
before the test run or partway
through the test run

Foot Cause
Eager Test trying to minimize
the number of unit tests

Missing Assertion Method FI"{] Ql I e T'E'ST

test fails..upon examining the
output of the Test Runner, we
cannot determine exactly which

Manual Event Injection
person must intervene during test
execution to perform some manual action

a test fails to compile or run
when the SUT is changedin
way s that donot affect the part

assertion failed . o
the test is exercising Slﬂw TESTS before the test can proceed " —
Root Cause | ot o anual Result Verification
-:;qlniua_a:! by the u._us.el-:::’r" Assertion Method Behavior Sensitivify Errﬂnc T‘E‘STS the Iis’r?;u kei long er;c:-uglgrh to many events ina SUT are hard fo we £ n_r"un The}:es’rs bET Therhq I:".T-:i]s’r gl}*_.lrin}rs
calls with identical or missing Assertion when chandes tothe SUT run th at developers den't run generate under pragram control pass - even when we know that the E
Messages hg ai one or more tests behave them every time they make a not returning the correct results
cause ofher fests fo ral erratically; sometimes they change tothe SUT
inal Lager '-Iﬁ_est h Foot Lauss pass and sometimes they fal if the tests we write f?:;gf;iﬁ? Checking Tests, w
a single test verimes too muc - i . - i ' e : Bl = o
d Functionalit fun-:r!rﬁnq;:_n Tl;'_f et rej_ilﬁ_n TFE:T - Slow Component UE“EE can begivenafalse sense of security because tests
! ”Sfrﬁfg. |I:I|-P|.qf|f;:n nizdi;gde Interacting Tests | a component of the SUT has high latency will fail only if an error/ex eption is thrown
oot Cause e tests depend on other tests in r
trying to minimize the number of unit S OMme Wl Foot Cause
tests (whether consciously or . [FootCause ! interacting with a database in Manual Fixture Setup
unconsiously) by verifying many test functionality the regression fests use fo Root Cause many of the tests person has toset up the fest
L . . | = "-."'E'rif";." Tl'-I'E' PoOsT=TEsT stare ot The SUT |"I'::|5 - enk‘.'”'-,:,ﬂmenf marivda ” bef:c,r-e The
conditions in a single Test M ethod been modified when several tests yse a shared Resource Leakage Y
Fisture makes it hard o run tests test or the SUT Bt Eoot Cause automated tests can be run
r individually estorthe consume nnite using slow components
— Foot Cause resources Brot Cayse
Context SEHEITIHIW code the regression tests use to tear lack of aftention to autemating the
when a test fails becuase the state down the fixture has been changed Foot Cause Too Many Tests fieture setup phase of th e test
or behavior of the context in which tests or 5;;':'T consume ﬁpifﬁ' there are semany tests that they are bound to
the SUT executes has changed D PR, resources by allocating those take a long time forun regardless of how fast
ata Sensitivi el ; g g
_ resourc es and qu ing to free them they execute
Bt C) a test fails because the afterward =y
P— data being used to test the]
the behavior of some other code or 4 _ - - Eoot Cause
systemis)on which the SUT depends SUT has been modified Lonely Test InfE_f‘ﬂcflng Test 5‘““’*’5‘5_ having so many tests General Fixture
has changed test can berun as part of a a special case of Inferacting _
Foat Cause) : Tests the test ey difF ' Root Cause tests are consistently slow because each test
L e . suite but cannot be run by itself{ [!®=Ts, TheTests drein diiferen | Tl edaE - .
Foot Cause SUT is being exercised with test suites running teo many of these builds the same over-engineered fixture
the functionality they were inputs that referen-:.e missing tests too Frequently _II
verifying depends in somewxay on or mediified dato wﬂi‘ﬂ _
the time or date Foot Cause construstung a large General Fixture sach
when tests in separate test suites time a Fresh Fixture is built
Intﬂrfﬂﬂe E 5iti"|‘if‘r‘ Try To cradars TI"l'E' SAME resalurses
ask ourselves whether the tests Asynchronous Test
are failing to compile; If so, ~ TestRun War Unrepeatable Test a few tests takeinordinately long to run; these
Interface Sensitivity is to blame test fallures occur at randome when a test behaves differently the first time it is tests contain explicit delays
several people are running tests run compared with how it behaves on
simultaneously subsequent test runs . Foot Cause _ .
. because of the variability in how long it takes for
Foot Cause | Boot Cayse these threads or processes to be started, the test
globally Shared Fixture that various tests the use. either deliberate ar usually needs toinclude a long delat "just in case”
access and sometimes modify accidental, of a Shared Fixture
Nondeterministic Tests Resource Optimism
test failures cccur at random, even a test that depends on external
when only a single Test Runner is resources has nondeterministic results
running the tests depending on when or whereitis run
L
Foot Cause
using different values sach : mjﬂ . :
Ctimea test is run rescurce that is available in one environment is
Source: ' not available in another environment

Gerard Mesz aros: ¥Unit Test Patterns: Eefactoring Test Code
Addison-Wesley Professional May 2007

The Tree of Root Cause

Y \W
Code Test Smells

the ‘classic’ bad smells that were first described by

Martin Fowler in ‘Refactoring'... these smells must be
recognized by test automaters as they maintain test

Obscure Test

it is difficult to understand the test at a glance.. asleng
as wee see a green bar, we think we are 'good to go', In
reality, we may have created a test that never fails

General Fixture
the test builds or references a larger
fixture than is needed to verify the
functionality in question

Foot Cause
test depends on my sterious external
rescurces, making it difficult to

code

Test Code Duplication

the same test code s repeated
mary times

Reinventing the Wheel
accidentally write the same sequence of
statements in different tests
' Eoot Cause
lack of awareness of which Test
Utility M ethads are availakle

Conditional Test Logic

a test contains code that may or
may not be executed

understand the behavior that it is
verifying

stery Guest

the test reader 1s not able to see the
cause and effect between fixture and

verification logic because part of it s

Foot Cause
predisposition towrite one's cwn
code rather than reuse cade
written by others

Hard To Test Code

code s difficult to test

Foot Cause —:l

useof if statements to steer execution to a fail
statement or toavoid executing certain pieces of
test code when the SUT fails to return walid data

Eoot Cause

use of if stotements to avoid tearing down
nonexistent fxture objects

done outside the Test Method

oot Cause

)

Fioot Cause

use of loops to verify the contents of
collections of chjects

test depends on mystericuis external
resources, making it difficult to
understand the behavier that it is
verifying

Foot Cause

use of Conditicnal Test Logic to verify complex

ochjects or polymorphic data structures

Irrelevant Information

the test exposes alot of irrelevant
details about the fixture that distract

Indirect Testing
the Test Method interacts with the SUT
indirectly via ancther object, thereby

use of Conditional Test Logic to
initialize the test fixture

-

Production Legic in Test
a form of Conditional Test Logic found in
the result verification section of our tests

making the interactions more complex | [the test reader frem what really affects

Foot Cause the behavior of the SUT
test depends on my stericuis external I
resources, making it dificult to Foot Cause
understand the behavior that it is a test contains a lot of data j

| Foot Cause
wanting to verify multiple test

conditions in a single Test M ethad

Cut-and-Paste Code Reuse

‘cut and paste'. results in many copies of
the same code

Untestable Test Code
body of a Test Metheod is cbscure
enough or contains enough Conditiona
Test Logic that we wonder whether
the fest is correct

|
Foot Cause
lack of refoctoring skills or
refactoring experienc ed

Foot Cause
|
[Foot Cause]

too mush trouble o bothier with in all but the
most unusual circumstans es _
time pressure

Highly Coupled Code
class cannot be tested without also
testing several other clusses

Foot Cause]
poor design 1

Eoot Cause

lack of chject-oriented
design experience

oot Cause
los k of reward structure that
encourages decoupling

Asynchronous Code

Conditional Verification Logic

verifying

Eoot Cause

Flexble Test

when the tester tries to prevent the
execution

Eoot Cause
when the tester tries fo prevent the

when weinclude all the code needed to
verify the cutcome rather than using a

much more compact declarative style t
specify theoutcome

the test code verifies different

functionality depending on when or
where it is from

Eager Test
test verifiies too much
functionality in a single

Test Method
Bt C Hard-Coded Test Data Foot Cause
data values in the fixture, assertions, or lack of contral of the environment execution of assertions if the SUT fails
to return the right objects

class cannot be tested via direct
method calls
start an executable.. wait until its
start-uphas finished..

Foot Cause
The cade that implements the algorithm we
with to test is highly coupled to the active

thinking in terms of manual testing (it
makes sense to group logical assertions
tegether if it's a live person doing the
testing)

arguments of the SUT arehard-coded in

the Test Method, cbscuring cause-effect Eoot Cause f

relationships between inputs and expecte test automater probably wasn't able fo Foot Cause
decouple the SUT from its dependencies

oufpufs

object inwhich it normally executes

when the tester uses loops to
verify the contents of

callections returned by the SUT

Foot Cause
test contains a lot of seemingly
unrelated Literal Values

Foot Cause
when weuse 'cutand paste’ reuse of
test logic

Source:
Gerard Meszaros: ¥Unit Test Patterns: Befactoring Test Code

Addison-Wesley Professional May 2007

Multiple Test Conditions

test tries to apply the same test logic to
many sets of input values, each withits
own corresponding expected result

-

Foot Cause
trying to test many test conditions
using the same test logic ina single
Test Method

Complex Teardown

leaves the test environment corrupted if |
does not clean up affer itself correctly

| Foot Cause

wanting to verify multiple test
conditions ina single Test Method

